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Abstrad-A three-dimensional analysis ofa semi-infinite crack embedded in a transversely isotropic
piezoelectric material was ~rformed by means of the eigenfunction expansions method. The results
show the characteristic 1/:;; singular behavior of the stress tensor in the vicinity of the crack. A
similar behavior is also revealed for the electric field. In addition the study demonstrates that
coupling (or decoupling) of the mechanical and electrical variables is a function of the distance to
the crack tip as well as of the crack orientation.

INTRODUcnON

Due to the intrinsic coupling effects that take place between electric fields and mechanical
deformation, piezoelectric materials have been extensively used as transducers and sensors.
More recently, they are playing a key role as active components such as sonar projectors
and pulse generators. Furthermore, cofired multilayer lead zirconate titanate (also known
as PZT) stacks are under development for potential use in high drive sonars as well as
ceramic actuators. In these new fields of application, severe mechanical stressing occurs
during operation. For example, in the case ofmultilayer stacks, the electrodes that terminate
inside the ceramic body are a source ofelectric field concentration which can result in stress
concentrations high enough to fracture the parts. Reliable service lifetime predictions of
piezoceramic components demand a complete understanding of the fracture processes of
these materials. Because piezoelectric materials can deform under both applied mechanical
and electrical loads, a study of the effects of electric fields on crack propagation is of both
theoretical and practical interest. Despite the fact that piezoelectrics have been in use for
decades in electromechanical devices, very little theoretical work has been done concerning
their mechanical failure. To the authors' knowledge only the works of Parton (1976) and
Deeg (1980) seem to have addressed the fracture problem in piezoelectric materials from a
theoretical stand point. More recently, Pak (1987) obtained a closed form solution to an
antiplane fracture problem. In his paper, the mode III fracture behavior of a finite crack
embedded in an infinite piezoelectric solid was studied. It was shown that the mechanical
and electrical fields exhibit the classical mode III singularity at the crack tip. It was also
shown that crack growth can be enhanced or retarded depending on the magnitude and the
direction ofthe applied electrical load. This observation agrees with that ofDeeg (1980) who
has considered an in-plane piezoelectric fracture problem using the distributed dislocation
method. Although significant experimental work has been carried out to study the strength
and toughness of piezoceramics containing defects (see Freiman, 1986; Harrison et al.,
1986; and Pisarenko et aI., 1985), in all cases the applied electric field has been considered
an environmental effect. Thus at present no clear picture exists of the effects of an electric
field on the fracture process from a continuum mechanics point of view. In an attempt to
obtain a better understanding of the mechanics of fracture in the presence of mechanical
and electrical loadings, this paper will focus on a three-dimensional study ofa semi-infinite
crack embedded in an unbounded transversely isotropic piezoelectric material. The analysis
is carried out with the aid of the eigenfunction expansions method which was introduced
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by Hartranft and Sih (1969) in order to study the purely elastic three-dimensional crack
problem. The present analysis makes it possible to obtain the singular behavior of the elastic
and the electric fields near a crack for all three possible modes of fracture. In addition, for
a given crack orientation it will be possible to examine the coupling (or decoupling) that
occurs between the mechanical and the electrical fields according to their proximity to the
crack tip.

GOVERNING EQUATIONS

Following Tiersten (1969) the equations governing the three-dimensional theory of
piezoelectricity in the absence of body forces and free charges can be written in compact
manner as follows:

(Jlj.j =0 (I)

DI,I=O (2)

(llj =Cljkl8kl- ekljEk (3)

DI = elklskl +£jJcEk (4)

81j = !(Uj,l+ul.j) (5)

E I = -t/>,I, (6)

where i,j,k,/ = 1,2,3, and (Jij, Di , Sij, Ui, E I and t/> are the components of stress, electric
displacement, strain, displacement, electric field and electric potential, respectively. Equa­
tions (3) and (4) represent the piezoelectric stress constitutive relationships and are expressed
in terms of the elastic stiffness constants Cijkl (measured in a constant electric field), the
dielectric constants £/j (measured at constant strain) and the piezoelectric constants eljk' In
the most general case of anisotropy (triclinic crystal structure), the piezoelectric material is
described by 21 +6+ 18 = 45 independent constants.

The present study is concerned with a transversely isotropic (or unidirectionally aniso­
tropic) piezoelectric, that is, a material with the symmetry of a hexagonal crystal class 6
mm. In Cartesian coordinates (with the z-axis being positioned normal to the plane of
isotropy), the constitutive equations reduce to expressions (A1) and (A2) of the Appendix,
from which it can be deduced that the solid is characterized by five elastic, two dielectric
and three piezoelectric constants, that is, a total of 10 independent material constants. It is
to be noted that materials with this type of symmetry (for example PZT ceramics) possess
high piezoelectric coupling. Consequently, the proposed analysis constitutes a relevant as
well as an interesting approach towards understanding the effects that electric fields have
on the propagation ofcracks contained in piezoelectric ceramics.

THE CRACK PROBLEM

In this section we are concerned with the analysis ofthe stress and electric displacement
fields (or induction) in the vicinity of a semi-infinite plane crack embedded in an infinite
transversely isotropic piezoelectric medium.
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Fig. 1. Coordinates used in the crack analysis.

The problem becomes more tractable ifwe introduce a system ofcylindrical coordinates
(r, 8, z) as illustrated in Fig. 1. Presently, we are interested in a particular crack orientation,
namely one in which the crack front is assumed to be straight and located along the z-axis,
while the y-axis is perpendicular to the crack planes. Such a configuration will render a
particular interaction between the stresses and the electric field as will be shown. The study
of other crack orientations and their consequences will be the subject of a forthcoming
paper.

According to Fig. I, the limits of the cylindrical coordinates are

0" r < 00, -1t" (J" 1t, -00 < z < 00.

With respect to this new coordinate system the equations ofequilibrium for the stress
and the electric displacement components are given by

(7)

while the constitutive equations are still given byeqns (AI) and (A2), but with the stress,
strain, electric field and electric induction matrices now transformed to cylindrical coor­
dinates. These relationships can be rewritten in terms ofthe elastic displacement and electric
potential gradients in the following manner:

OUr (1 OUB Ur) oUz oq,
(ffHJ=CI2-+CII --+- +C13-+e3t-or r 0(J r oz oz
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1 (lOUr OUe ue)tTre = 2(Cll -en) - - + - - - ,
r 00 or r

(
aur OUr) 04>Dr=elS -+- -£11-ar oz ar

aUr (1 aUe Ur) OUr 04>
Dr =e31-+e31 --+- +en--£33-'or r 00 r OZ OZ

(8)

(9)

where (u" U9> ur) are the cylindrical components of the displacement vector.
As was shown by Hartranft and Sih (1969), the three-dimensional elastic crack problem

can be solved in a systematic manner by representing the displacement vector in terms of
a double infinite series of arbitrary functions of the cylindrical coordinates. In the present
study, the same idea is introduced and extended in order to include the behavior of the
electric field as well. Therefore, it is suitable to write

co co

(u U U .I.) - ~ ~ ,;.",+II[R(III) 0(11I) Z(III) "'(III)]
n 9, " 'I' - ~ ~ If ,0,. , If ,W" ,

",-0,,-0
(10)

where the functions R~III), e~III), Z~III), and CIl~III) depend on 0, z and l"" and are equal to zero
for n < 0 in order to avoid unbounded displacements and electric potential in the neigh­
borhood of the crack tip. The eigenvalues A.III (m =0, 1, ...) as powers of r, are assumed to
be constants, yet to be determined. When the above functions are substituted into the
constitutive equations, we obtain

(11)

where for brevity we show in full only two of the equations shown in (8) and (9). Next, the
stresses and the electric displacements given byeqn (11) are substituted into eqn (7), leading
to expressions that will hold for arbitrary powers of r. As a consequence, a system of four
coupled partial differential equations is obtained, namely:
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a2e(m) aR(m)
CII ao; +WA.m+n+3)Cll+(A.m+n-dC12l a~ +WA.m+n)2-I](CII-cde~m)

5

a2z(m) a2<1l(m)
C44 ao; +(A.m+n)2C44z~m)+eIS ao; +(A.m+n)2el,<Il~m)

a2e~~1 aR~~1 a2z~~2 a2<1l~~2
= -(C13+ C44) ozoO -(A.m+n)(C13+C44)~-C33 OZ2 -e33aT' (12.3)

The above system can now be solved for different values of n, where solutions for
R~m), e~m), z~m) and <Il~m) in terms of 0 and z will be obtained in terms of their previous
values. The first step towards achieving the crack solution is to evaluate the eigenvalues ;'m'
Since the eigenvalues are independent of n, without loss in generality, we can simplify the
problem by determining the eigenvalues for the case of n = O. For such a particular case
the four right-hand sides ofeqns (12.1)-(12.4) vanish, and the original set ofequations will
then decouple into two systems independent of each other-one system of equations
containing the functions R~m) and fJb"'), while the other coupling z~m) with <Il~m), as is shown
below.

a2R~m) ae~m)

~(CII -CI2)aor- +(A.';'-I)cIIR~m)+![(A.m-3)Cll + (A.m + l)cl2l --ae- =0

a2e~m) aR~m)

CII aor- +HA.';' -IHCII -C(2)e~m)+WA.m+3)el\ +(A.m-I)cul--ae- = 0, (13.1)

(13.2)

The system given by eqn (13.2) has a straightforward solution in terms of the product
of functions of z and 0, that is

z~m) = Ao(z) cos A.mO+Bo(z) sin A.mO

<Il~m) = Co(z) cos A.mO+ Do(z) sin lmO, (14)

where Ao(z), Bo(z), Co(z), Do(z) are arbitrary functions of z. In order to find the solution
to eqn (13.1) we reduce the system to two independent fourth-order ordinary differential
equations of the form

(IS)

with ~ given by
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(16)

where L" L 2 , L 3 , L 4 are differential operators applied to the functions R~m) and v~ml; for
example

and similar expressions for the other three operators. Here we have used the notation
D 2 =02/00 2 to denote second-order differentiation. Equation (16) will give rise to a fourth­
order algebraic equation, which once set equal to zero produces the roots

(17)

Consequently, the solutions to eqn (IS) are given by

Rh"') = £o(z) cos (l", + 1)0+ Fo(z) sin (l", + 1)0+ Go(z) cos ().", -1)0+ Ho(z) sin ().", -1)0

0lf'l = /o(z) cos (l",+ I)O+Jo(z) sin (lm + I)O+Ko(z) cos ().m -1)0+ Lo(z) sin ().m -1)0,

(18)

where the functions £o(z), ... ,Lo(z) are yet to be determined. However, not all of these
arbitrary functions are independent. In fact, relationships among them can be established
by substituting the above solutions into eqn (IS). For example Jo(z) can be written in terms
of £o(z) as follows:

(19)

with similar relationships among the other six functions, which for the sake of brevity are
omitted. In order to find the eigenvalues lm, the next step is to make use of the crack surface
boundary conditions. This implies the substitution ofeqns (14) and (18) into eqn (II) when
n = O. It is assumed that the crack faces are free of surface traction and surface charge and
that the crack is filled with vacuum. Under these conditions it is quite appropriate to write
(Pak,1987):

(20)

As a result, a system ofeight algebraic equations in the eight unknowns Ao(z), ... , Ho(z)
is obtained. A non-trivial solution of the system is obtained if the 8 x 8 determinant of the
coefficients is equal to zero. However, due to the particular coupling expressed by eqns
(13.1) and (13.2), we can solve two 4 x 4 determinants independent of each other, which
both lead to the same eigen-equation, namely

which renders the eigenvalues

m
lm = "2' m = 0, 1,2, ... ,

(21)

(22)

where negative values of m are excluded in order to insure bounded displacements and
electric potential at the crack tip. We conclude from (22) that r varies as rO

, r 112
, r l

, r3/2,
etc.
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Once the functional form of the radial variable is known, the field variables can be
expressed in terms of a single series. To this end we introduce new functions j", U", hIt, lp"
depending on 9 and z only. Therefore, we can write

00

(u" U/J, Un 4» = L r"/2 [f" (8, Z), U,,(O, Z), h,,(8, z), lp,,(8, z)].
,,-0

(23)

We now proceed in the same manner that led to eqn (12), that is, we substitute eqn (23)
into eqns (8) and (9) which yields

(24)

(25)

Further substitution of the above relations into eqn (7) generates a new system of four
partial differential equations which can be viewed as recurrence relations for the functions
j", U", hIt, lp". These equations are:
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The solution of the above set of equations for all possible values of n provides the
behavior of the stress and electric field components anywhere in the piezoelectric medium.
In the most general case the four equations will be coupled and particular solutions will
need to be found. However, as observed by inspection, the equations become homogeneous
for the values of n =°and n = 1. Less obvious, but still true as will be shown, is the fact
that for n = 2 the four right-hand sides also vanish. In addition, for these particular values
of n a substantial simplification of the problem is achieved due to the fact that eqns (26.1)
and (26.2) will couple J" and Un only, while eqns (26.3) and (26.4) will relate the functions
hn and lpn'

THE SOLUTION FOR THE LEADING TERMS

Since our main concern from a fracture mechanics point of view is the behavior of the
fields in the vicinity of the crack tip, we will restrict ourselves to the solution of eqns (26.1)­
(26.4) for only the first three values of n. Towards this end we first analyze eqns (26.1)­
(26.2) which as before can be reduced to two fourth-order ordinary differential equations
for J" and Un' Thus we can write

!1J" = 0, !1Un = 0, (27)

with!1 given again by eqn (16), but with the differential operators L j (i = 1,2,3,4) expressed
in the following form :

L 2= ~ [ (i -3)CII + (i + I)CI2JD

L 3 =~[(i+3)CII+(i-I)C12JD

L4=CIID2+~(:2 -1)(CII-C12), (28)

where D and D2stand for iJliJ(J, and iJ2/iJ(J2, respectively. The expansion ofeqn (16) using
(28) leads to

(29)

Replacing D by r and equating to zero we obtain the fourth-degree characteristic equation
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with roots

Thus it follows that the solutions to (27) can be expressed as

f,.(O,z) = J;,1l(z) cos (i +1)0+J;,2)(Z) sin (i +1)0

+F;,3)(Z) cos (i -I )0+ J;,4)(Z) sin (i -1)0

g,,(O, z) = G~Il(z) cos (i +1)0+ G~2)(Z) sin (i +1)0

+ G~3)(Z) cos (i -I )0+ G~4)(Z) sin (i -I )0,

9

(30)

(31)

(32)

where the coefficients Jry,1)(Z), ... , G~4)(Z) constitute eight independent arbitrary functions
of z. Although it is true that solutions to the original system formed by (26.1)-(26.2) are
contained in the solutions to eqn (27), the converse is not generally true. In fact, eqn (32)
will be a solution to the original system of equations if certain relationships exist among
the eight functions Jry,i}(z), G~i}(z) (i = 1,2,3,4). These relationships are obtained by sub­
stituting eqn (32) into the first two of (26), leading to the following results:

G~I}(z) = Jry,2)(Z), G~2)(Z) = -Jry,I}(z), G~3)(Z) = CX"Jry,4)(Z), G~4)(Z) = -ex"F;,3)(Z),

(33)

where

(n/2+3)cll +(n/2-1)cI2
ex" = (n/2-3)cll + (n/2+ l)cl2 .

Now the solutions (32) can be written as

(34)

f,.(O,z) = A~I)(Z)cos (i + 1)0+A~2)(Z)Sin (i +1)0

+B~I)(Z)cos (i -1)0+B~2)(Z)sin(i -1)0

g,,(e, z) = A~2)(Z) cos (~+ I)O-A~l)(Z) sin (~+l)e

+ex,,[B~2)(Z)cos (~ -I)O-B~I)(Z) sin (~ -I)eJ. (35)

where we note the renaming of the functions Jry,i}(z).
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Turning now our attention to the system of equations formed by (26.3) and (26.4),
after simple algebraic manipulation we can write

which have as solutions

hn(O,z) = C~I)(z) cos ~0+C~2)(Z) sin ~O

qJn(O,z) = D~I}(Z) cos ~0+D~2)(Z) sin ~e.

(36)

(37)

The next step is the determination of some of the independent coefficient functions
A~)(z), B~)(z), C~)(z), D~i)(z) (i = 1,2) by introducing the crack face boundary conditions
(20), which in terms of the eigenfunctions take the form

ohn oqJn 09n- 2
C44 = 00 +elS aif +C44 -a;- = 0

ohn oqJn 09n- 2
eW""§ii -£11 aif +els-a;- = 0, (38)

being evaluated at 0 = ±n.
A summary of the results obtained for the first three values ofn, with the corresponding

expressions for the stress and electric induction components, are presented below.

(i) Case n = 0
By means of eqns (35), (37) and (38) we obtain

which allows us to write

10 = Ab»(z) cos 0+Ab2)(z) sin 0

90 = Ab2}(z) cos O-Ab'}(z) sin 0

ho = Cb')(z)

qJo =Dbl)(z).

(39)

(40)

In order to describe the field variables anywhere in the piezoelectric solid we introduce
the notation
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(1" == L «(1"),, == «(1,,)0 + «(1rr) 1+ .. "
,,-0
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(41)

with equivalent definitions for the rest of the stress and electric displacement components.
Using (24), (25) and (40) we find that

(ii) Case n == 1
In this case the boundary conditions yield

(42)

(43)

and the eigenfunctions take the form

f (1)( )[ 30 SCII - 3C'2 9J A(2)()[' 39 ISCII - 3c12 . OJ
I == A} z cos - - cos - + , Z Sin - - - SIn-

2 CII +Cl2 2 2 3 Cll +c12 2

[ . 39 7cII -Cl2 . OJ (2 [ 30 17cII -CI2 9J
9, == -A\I)(z) Sin -2 - Sin -2 +A I )(z) cos -2 - -3 cos-

2CII +Cl2 CII +CI2

hi == C\2)(Z) sin ~

((), == D\2)(Z) Sin~,

which after algebraic manipulation leads to

(4S)

(46)
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(47)

The preceding equations represent an important outcome of this article since they
reveal the characteristic l/~ type of singularity for both the stress and electric induction
components. It is also worthwhile to note that in the case of a vanishing electric field, the
angular variations of the stresses coincide with those of the purely elastic case considered
by Hartranft and Sih (1969), although a substantial and expected difference resides in the
material parameters involved in eqns (46).

(iii) Case n = 2
First we verify that the right-hand sides of eqns (26.1 )-(26.4) indeed remain equal to

zero by making use of eqn (40). Furthermore, the use of the boundary conditions now
yields

A~2) = 0, C~2) = - A 1>2)' , D~2) = 0,

B~I) = I [(CII -C12)A~I) -CI3C I>I)' -e3ID I>I)'],
CII +C12

where the primes denote derivatives with respect to z, and the solutions become

(48)

12 = A~I)(z) cos 20+ 1 [(CII -c12)A~1) -C\3CI>I)' -e3ID I>I)']
CII +C12

92 = -A~I)(z) sin 20+B~2)

h2 = C~I)(z) cos 0-AI>2)'(Z) sin 0

Cf'2 = D~I)(z) cos 0, (49)

which once substituted into (24) ·and (25) give the components of the field variables which
are independent of the radial distance, namely

(u"h = (cll-c12)A~I)(l+cos 20)-e3IDI>I)'

(u86h = (cll-cI2)A~I)(l-cos 20)-e3IDI>I)'

( ) _2(CII-CI2)C\3A(I) [ 2et3 JC(I), [2C\3e31 JD(I),
UZZ 2 - 2 - -C33 0 - -e33 0

CII+C12 CI\+CI2 CII+C12

(uz9h = -C44[AI>I)' +C~I)] sin O-elsD~I) sin 0

(uzrh = C44[AI>I)' +C~I)] cos O+elsD~1) cos 0

(ur9h == -(CII-CI2)A~I) sin 20, (50)

(Drh == [Abl)' +C~I)]eIS cos O-£IID~I) cos e
(D9h == -[Abl)' +C~I)]elS sin O+£IID~I) sin 0

(Dzh == 2(cII -C12)e31 A~I) + [ 2c\3 e31 +e33]Cbl), _ [ 2eil +£33]Dbl)'. (51)
CII+CI2 CII+C12 CII+C12

It is clear that the above procedure can be continued for values of n ~ 3. The main
difference will reside in the existence of non-vanishing terms in the right-hand sides ofeqns
(26.1)-(26.4). Therefore, particular solutions will have to be added to eqns (35) and (37).
The corresponding solutions will lead to stress and electric displacement components in
powers of r1/2, r I, r3/2, etc., which for the sake of brevity are omitted.
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Observation. If we tonsider the case of an elastic isotropic medium with a crack and
no electric field, then the elastic constants become

E(I-v) Ev E
cll=c33=(I+v)(I_2v)' CI2=CI3=(I+v)(I_2v)' C44=2(1+v)' (52)

In such a case the displacement functions f", gIl and h" (n = 0, 1,2) reduce to those given
by Hartranft and Sih (1969) leading to the same stress distribution up to a factor E/I +v
due to the different definition for the displacement field.

The equations derived so far are quite general in the sense that no specific type of
mechanical or electrical loading has been imposed. In this respect we could elaborate
further by considering different loading conditions which will determine the structure of
the functions A~i), . .. , D~i) in terms of even or odd powers of z. In particular we turn our
attention to the following problem.

THE ANTIPLANE PROBLEM

We will use this problem in order to verify the validity of our results. We consider the
conditions analyzed by Pak (1987), that is, the interaction of out-of-plane stresses with the
in-plane (x-y plane) electric field components. For purposes of comparison we need to
transform the cylindrical components of stress and electric displacement into Cartesian
components. The only term of interest in the series expansion, is the one corresponding to
n = I. The field variables, therefore, can now be written as

while the electric potential, the electric field, and the elastic displacement become

4> = j;D\2) sin ~

Ex = _1_D \2) sin ~
2j; .. 2

I 8
E]I = _-D\2) cos -

2j; 2

Uz = j;C\2) sin ~.

(53)

(54)

It should be noted that since in this case the independent variables are x and y only,
the coefficients C\2) and D\2) entering in the above expressions are independent of z.
Furthermore, if we redefine these constants according to
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(55)

we recover the results obtained in the aforementioned reference by a completely different
method. The constants K S and K E were defined by Pak (1987) as the "strain" and "electric
field" intensity factors, respectively.

DISCUSSION

A three-dimensional analysis of an infinite piezoelectric medium containing a crack
has been performed. The behavior of the stress and electric field components in the neigh­
borhood of the crack tip was obtained by means of the method ofeigenfunction expansions
showing the classical l/yr;. type of singularity.

If we consider the x-y plane to be the in-plane surface and the z-axis to be the out-of­
plane direction, as has been done in this analysis, the constitutive equation (AI) shows that
the out-of-plane electric field (Ez ) becomes coupled with the in-plane stresses (O'm O'yy) ,

while the in-plane electric fields (Ex, Ey ) become coupled with the out-of-plane stresses
(O'm O'zy). However, the results of this analysis also show that at the crack tip (n = 1) only
the in-plane electric field and the out-of-plane stresses become coupled, indicating that the
in-plane electric field strongly influences the out-of-plane crack tip stresses and vice versa.
The results also demonstrate that the interaction between the out-of-plane electric field and
the in-plane stresses can be observed for the value of n ~ 2, which indicates that the out­
of-plane electric field does not become singular and does not induce singular stresses at the
crack tip. This becomes clear in light of fact that the out-of-plane electric field is parallel
to the crack faces. Thus E: does not get disturbed by the crack. It is demonstrated here that
the coupling phenomenon at the crack tip is strongly influenced by the crack orientation
with respect to the material anisotropy.

It is also important to note that thus far the analysis has led to qualitative results in
the sense that we know the radial and angular behavior of the leading terms of the stress
and electric field components. However, the amplitudes of the coefficient functions in terms
of z remains unknown, and their determination is constrained to the particular boundary
value crack problem under investigation.

We also emphasize that this analysis was three-dimensional in the sense that three
independent coordinates were employed to characterize the behavior of the fields sur­
rounding the crack. Our study can also be extended to the case in which the medium is a
piezoelectric thick plate containing a through crack. However, it is important to realize that
the results in such a case could be valid, at best, only in regions interior to the plate. In its
present form, our formulation cannot address thickness effects.

Finally, we note that for the material symmetry and crack orientation just considered,
the in-plane problem would not provide useful information because no interaction exists
between in-plane stresses and in-plane electric field. Because the solution to an in-plane
coupling problem is of vital importance in understanding the influence of electro-elastic
coupling on the crack propagation, the authors are currently working on a plane strain
problem in which the leading edge of an embedded crack is along an axis other than the
axis of anisotropy.
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APPENDIX

The constitutive relations describing a transversely isotropic piezoelectric material with z being the anisotropic
axis are given by

tT"" CII CIZ CI3 0 0 0 8... 0 0 ell

tTyy CI2 CII CI3 0 0 0 8yy 0 0 ell

FltT.. CI3 CI3 Cll 0 0 0 8:: 0 0 ell
(AI)
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